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Background and Objectives: Low survival rate of
individuals with oral cancer emphasize the significance of
early detection and treatment. Optical spectroscopic tech-
niques are under various stages of development for
diagnosis of epithelial neoplasm. This study evaluates the
potential of a multivariate statistical algorithm to classify
oral mucosa from autofluorescence spectral features
recorded in vivo.
Study Design/Methods: Autofluorescence spectra were
recorded in a clinical trial from 15 healthy volunteers and
34 patients with diode laser excitation (404 nm) and pre-
processed by normalization, mean-scaling and its combi-
nation. Linear discriminant analysis (LDA) based on leave-
one-out (LOO) method of cross validation was performed on
spectral data for tissue characterization. The sensitivity
and specificity were determined for different lesion pairs
from the scatter plot of discriminant function scores.
Results: Autofluorescence spectra of healthy volunteers
consists of a broad emission at 500 nm that is characteristic
of endogenous fluorophores, whereas in malignant lesions
three additional peaks are observed at 635, 685, and 705 nm
due to the accumulation of porphyrins in oral lesions. It was
observed that classification design based on discriminant
function scores obtained by LDA-LOO method was able to
differentiate pre-malignant dysplasia from squamous cell
carcinoma (SCC), benign hyperplasia from dysplasia and
hyperplasia from normal with overall sensitivities of 86%,
78%, and 92%, and specificities of 90%, 100%, and 100%,
respectively.
Conclusions: The application of LDA-LOO method on the
autofluorescence spectra recorded during a clinical trial in
patients was found suitable to discriminate oral mucosal
alterations during tissue transformation towards malig-
nancy with improved diagnostic accuracies. Lasers Surg.
Med. 41:345–352, 2009. � 2009 Wiley-Liss, Inc.
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INTRODUCTION

Oral cavity cancer is a major health concern the world
over. India has one of the highest incidences of oral cancer

in the world and it ranks first in males and third in females
[1,2]. This is primarily associated with the habit of betel
quid chewing, pan, and tobacco usage of a large population
in India. In spite of advancements in the field of cancer
detection and therapy, the 5-year survival rate of oral
cancer patients is still below 60%. Oral pre-malignant
lesions often present as white patches (leukoplakia) or as
red patches (erythroplakia) with a risk for conversion to
malignancy of approximately 10% and 90%, respectively.
Progression from pre-malignant to cancerous condition
takes place usually over many years, which can be
prevented if detected in its formative stages. The delay in
diagnosis may be partly due to the ignorance of public about
the symptoms of oral pre-cancer and the need for routine
oral cancer screening.

Proper management of patients with pre-malignant
or malignant oral lesion often starts with its accurate
diagnosis. The widely accepted diagnostic method is visual
examination followed by biopsy and histopathological
evaluation of the suspicious lesion. To ensure accurate
diagnosis the biopsy site must be selected carefully. But,
even for experienced clinicians, it is difficult to find the
optimum site for biopsy since suspicious oral lesion often
varies in disease severity from one part of the lesion to
another. For example, a lesion may have early invasive
squamous cell carcinoma (SCC) in one part and mild
dysplasia in another. An appropriate biopsy would include
tissue from the worst part of the lesion. Therefore, accurate
histopathological diagnosis depends on the clinician doing
an appropriate biopsy and providing adequate clinical
information, and on the pathologist correctly interpreting
the biopsy results [3]. Because of the complexity of the
head and neck region multiple or repeated biopsies are
not possible. Since biopsy is painful and pathological
analysis time consuming there is a need to develop
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alternate methodologies for in vivo detection and real-time
diagnosis of oral pre-malignancies.

Development of a non-invasive method for real-time
screening of neoplastic changes and diagnosis of oral cavity
lesions have great potential to improve the quality of life
and survival rate of oral cancer patients. Autofluorescence
spectroscopy is an innovative diagnostic modality that
reduces the need of repeated biopsies and unlike biopsy;
the screening can be carried out repeatedly in vivo. The
technique involves illumination of suspicious lesions
with monochromatic light and recording the fluorescence
spectra emitted by endogenous tissue fluorophores such
as nicotinamide adenine dinucleotide (NADH), collagen,
elastin, keratin, flavin adenine dinucleotide (FAD), and
porphyrins. The presence of disease results in alteration
in concentration of these fluorophores as well as the light
scattering and absorption properties of tissue, nuclear size
distribution, collagen content, and epithelial thickness,
which leads to the spectral variations [4].

Fluorescence spectroscopy has been used successfully as
in vivo and in vitro techniques for fast and non-invasive
detection of cancers and pre-cancers in a variety of organ
systems including cervix, bronchus, breast, esophagus,
colon, skin, and oral cavity [5–12]. De Veld et al. [13] have
given an extensive review of literature and presented
the status of autofluorescence spectroscopy and imaging
in the diagnosis of oral lesions in vivo. The spectral
information is compared with histopathological reports,
and algorithms were developed to classify tissues based on
histology, thereby enabling fast, non-invasive, automated
screening, and diagnosis in a clinical setting [14].

Multivariate analytical methods were used for spectral
analysis by various research groups in cancer detection
[15–17]. Ramanujam et al. [15] combined principal compo-
nent analysis (PCA) and logistic regression for classifica-
tion of human cervical tissue fluorescence acquired in vivo
and reported an overall sensitivity of 88% and specificity of
70% to differentiate squamous intraepithelial lesions
(SILs) from normal squamous epithelia and inflammation.
Using partial least squares (PLS) and artificial neural
network (ANN) based classification model, Wang et al. [16]
obtained a sensitivity of 81% for recognizing pre-malignant
and malignant tissues and a specificity of 96% for identify-
ing benign samples that consists of normal, oral submucous
fibrosis and epithelial hyperplasia. Kamath and Mahato
[17] have discussed the potential of fluorescence spectro-
scopy for detection of oral carcinomas in vitro by classi-
fication of the spectra by PCA and k-means nearest
neighbor analysis and obtained a specificity, sensitivity,
and accuracy of 100%, 94.5%, and 96.2%, respectively.
Manjunath et al. [18] reported that PCA using Mahalanobis
distance and spectral residuals provide best discrimination
among oral tissues using autofluorescence. All these
studies reveal the capability of multivariate analytical
methods in classification of tissues from autofluorescence
spectral data.

Discriminant analysis (DA) has been performed by many
groups for spectral data analysis [19–21]. Following ex vivo
studies, Wang et al. used partial least squares discriminant

analysis (PLSDA) with cross validation to analyze in vivo
spectral data from hamster buccal pouch lesions. Their
studies showed that by choosing proper thresholds, PLSDA
with cross validation provides an identification rate of 86%
for hyperkeratosis, 87% for normal, and 89% for dysplastic
samples [19].

In this study we explore the potential of linear discrim-
inant analysis (LDA) to predict group membership of a
sample with unknown group. The discriminant function
scores determined by LDA based on leave-one-out (LOO)
method were used to find a cut-off value for discriminating
normal from hyperplasia, hyperplasia from dysplasia
and dysplasia from SCC lesions. Towards this, we have
recorded in vivo laser-induced autofluorescence (LIAF)
spectra of oral lesions from patients and healthy volunteers
using a point monitoring fiber-optic device and utilized
LDA-LOO method for real-time discrimination oral mucosa
and the results are presented.

MATERIALS AND METHODS

Study Population

Autofluorescence spectra were recorded from 15 healthy
volunteers with no clinically observable lesions and
34 patients having different grades of malignancy. An
experienced physician specialized in radiation oncology
identified lesions for spectral studies and records its visual
imprint. Measurements were carried out at the out patient
clinic of the Regional Cancer Centre (RCC), Trivandrum
after getting approval of the Ethical Committee of RCC.
Patients were asked to sign an informed consent prior to
measurements. All the patients included in this study had
prolonged habits of either pan chewing, smoking, or alcohol
consumption, while healthy population maintained good
oral hygiene with none of the above habits.

Experimental Setup

The LIAF system used for in vivo measurements is shown
in Figure 1. This system consists of a 404 nm, 50 mW diode
laser (Stocker Yale, Montreal, Canada) for excitation of
fluorescence and a fiber-optic spectrometer (Ocean Optics,
Inc., Dunedin, FL; Model: USB 2000FL VIS-NIR) con-
nected to the USB port of a laptop for recording of tissue
fluorescence. Light emission from the laser source is guided
to the lesion through a 3-m long bifurcated fiber-optic probe
(Ocean Optics, Inc.; Model: ZR400—5-VIS/NIR) that has a
central fiber to deliver the excitation light to the lesion and
six surrounding fibers (400 mm diameter each) to collect the
fluorescence emission. In order to maintain the fluores-
cence intensity incident on the spectrometer CCD within
safe limits the laser power at the probe tip was maintained
at 1 mW. The fiber-optic probe was terminated in a stainless
steel ferrule of 15 cm length and 6 mm diameter for easy
access to the oral cavity and to enable sterilization with
boiling water, before and after use. A flexible 10 mm long,
disposable, black PVC sleeve was inserted at the probe tip
to avoid ambient light from entering the detection system
and to provide extra hygiene. The separation between the
probe tip and the sample was optimized (by sliding the PVC

346 JAYANTHI ET AL.



sleeve over the ferrule) to a distance of 3.5 mm; wherein the
excitation beam completely overlaps the collection area.
A long pass filter (Schott GG420) was used during
fluorescence measurements to block the back-scattered
laser light from entering the spectrometer. The spectrum
was recorded in the 420–720 nm wavelength region using
the OOI Base32 software supplied by Ocean Optics, Inc.,
configured to record the spectra, averaged for 40 scans,
with a boxcar width of 10 nm and an integration time
100 milliseconds. The experimental system is explained
in detail elsewhere [22].

Study Protocol

Before measurements, all patients and healthy volun-
teers were asked to rinse their mouth with 0.9% saline
solution for 2 minutes in order to reduce the effect of
recently consumed food. They were also provided with
protective goggles to shield their eyes against laser light.
After 15 sets of spectral measurements from a typical
site covering an area of 6 mm diameter, a punch biopsy
(2�2 mm2 approximately in size) was taken from the
central portion of the measurement site. The biopsy slides
were prepared and classified by an experienced pathologist
who was blinded to the autofluorescence spectral results.
In the case of healthy volunteers, visual impression was
carried out instead of biopsy. After measurements, the
spectroscopic results were correlated with histopatho-
logical findings.

Data Processing

Autofluorescence spectral data recorded from different
oral cavity sites of patients/volunteers were categorized
based on pathological reports as normal (15 healthy volun-
teers), hyperplasia (10 patients), dysplasia (9 patients), and
SCC (15 patients). Randomly selected 29 samples belonging
to these categories with known group membership (patho-
logical results) were used as a training/prediction set and
the remaining 20 samples with unknown group member-
ship were used for validation. Data pre-processing methods
such as normalization, mean-scaling, and normalization
cum mean-scaling were used to find out whether there is
any spectral enhancement due to pre-processing [15].
Spectra from each patient was averaged and then normal-

ized individually to the maximum fluorescence intensity of
each spectrum. Mean-scaling was performed by calculating
the mean of each sample and then subtracting this mean
from each spectrum, and the resultant value represents the
difference in fluorescence at a particular site with respect to
the average spectrum.

Statistical Analysis

Principal component analysis. PCA is a multivari-
ate statistical technique that is used for compressing a
larger data set without losing the strength of data. Since the
fluorescence intensity data set extends from 420–720 nm
(with three values for each nm), we used PCA to identify the
orthogonal components of the spectra with maximum
variance within the complete data set. LDA was then
performed on the extracted significant principal compo-
nents to determine the discriminant function scores. Each
principal component is co-related to the spectral variables
of the original fluorescence emission and provides insight
into the spectral features that contribute to the classifica-
tion [6,15]. An independent sample Student’s t-test was
carried out for testing the significance of mean PC scores
between different tissue categories.

Linear discriminant analysis. Discriminant func-
tion is a latent variable which is created as a linear
combination of discriminating variables, such that L ¼
b1x1 þ b2x2 þ � � � þ bnxn þ c, where b’s are the discriminant
coefficients, the x’s are the discriminating variables, and c is
a constant. The linear discriminant function transforms
the original PC scores on the sample into a single
discriminant score, which represents the sample position
along a line defined by the linear discriminant function.
Functions are generated from a sample of cases for which
group membership is known, and these are then applied to
new cases with unknown group membership. This classi-
fication based on LOO method of cross validation produces
a confusion matrix that compares predicted versus actual
group membership.

The extracted significant principal components with
P-value <0.005 are used as the input variables for DA,
which produces a classification table to assess how well
the discriminant function works. In order to assess the
significance of the discriminant function scores the Wilks
Lambda test was used. Since the discriminant scores are

Fig. 1. Schematic of the experimental set up for LIAF measurements.
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predictors of group membership for classifying observa-
tions, we have performed a blind-test using the remaining
20 samples to assess the suitability of the training data
set.

RESULTS

Spectral Features

In vivo autofluorescence spectral measurements were
carried out on consenting healthy volunteers and patients.
Figure 2 shows the fluorescence spectra averaged for
different tissue categories and normalized with respect to
the maximum spectral intensity around 500 nm. Marked
differences in spectral features are observed between
healthy and diseased tissues. The broad autofluorescence
peak at 500 nm arising from endogenous fluorophores is
characteristic of all epithelial tissues. The 635 nm peak is
more prominent in lesions diagnosed as SCC as compared
to dysplastic and hyperplastic tissues. In addition two
peaks are also seen at 685 and 705 nm that are absent in
healthy tissues. Another notable feature is the broadening
of the 500 nm peak towards red wavelength region in
dysplastic tissues.

Correlation between each principal component and
variables of the normalized fluorescence emission spectrum
are studied with the help of the component-loading plot.
Figure 3 shows loadings of the first three PCs for all
the lesions studied. PC1 represents the mean autofluor-
escence spectrum for all lesions. PC2 and PC3 look similar
to the porphyrin like peaks around 635 and 705 nm and also

show dips at 545 and 575 nm due to oxygenated hemoglobin
absorption in blood. These three PCs jointly give a variance
of 98.6% to the spectra.

Linear Discriminant Analysis

Pair-wise DA was performed on the extracted significant
principal components from the training set. Scatter plots
were drawn based on the discriminant function scores
obtained (Fig. 4a–c). Since the scores obtained by LDA can
either be negative or positive, the scatter plot for each pair
is given separately. The cut-off value in the scatter plot,
which is the weighted mean of the paired values, is used to
classify different lesions. The cut-off values for normal–
hyperplastic, hyperplastic–dysplastic, SCC–dysplastic
pairs are 0.241, 0.188, and�0.191, respectively. Diagnostic
accuracies such as sensitivity, specificity, positive and
negative predictive values for each pair were calculated by
correlating the position of discriminant function scores
for each lesion in the scatter plot with the corresponding
histopathological result. The sensitivities obtained for
normal–hyperplasia, hyperplasia–dysplasia, and dyspla-
sia–SCC pairs are 83%, 80%, and 89% respectively and
the corresponding specificities are 100%, 100%, and 80%,
respectively (Table 1).

In order to test the reliability of the classification
procedure used, a blind-test was carried out in 20 patients
with unknown group membership. Discriminant function
scores of the blind test data were inserted into the scatter
plot of the training set for validation and the results are
correlated with histopathological findings. It was observed
that the developed algorithm could correctly classify ten
samples of normal–hyperplastic pairs, seven samples out

Fig. 2. LIAF emission from the oral mucosa of 34 patients and

15 healthy volunteers. Normal spectra show the average

of 15 measurements carried out at 11 anatomical sites in

15 healthy volunteers, whereas hyperplasia, dysplasia, and

SCC spectra are the mean of 15 measurements each in 10, 9,

and 15 patients, respectively.

Fig. 3. First three principal components of different lesion

groups included in the analysis. Each averaged spectrum was

normalized with respect to the emission peak intensity.
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of eight dysplastic-hyperplastic pairs (with one dysplastic
case misclassified as hyperplasia) and nine samples out of
ten dysplastic-SCC pairs (with one case of SCC misclassi-
fied as dysplasia). This leads to a specificity of 100% and
sensitivity of 100%, 75%, and 83% respectively for normal–
hyperplasia, hyperplasia–dysplasia, and dysplasia–SCC
lesion pairs in the blind-test (Fig. 4a–c).

The overall sensitivity, specificity, accuracy, positive
predictive value (PPV) and negative predictive value (NPV)
calculated from the scatter plots (Fig. 4a–c) are given in
Table 1. We were able to discriminate pre-malignant

dysplastic lesions from malignant SCC with 86% sensitiv-
ity, and 90% specificity, whereas for discriminating hyper-
plasia from normal and hyperplasia from dysplasia, the
sensitivities were 92% and 78% respectively, with 100%
specificity.

DISCUSSION

The autofluorescence peak at 500 nm has been reported
as due to emission from endogenous fluorophores like
NADH, FAD, collagen, elastin, and amino acids, while
the emissions at 635 and 705 nm are from enhanced
occurrence PpIX in malignant tissues [22–24]. The addi-
tional peak seen at 685 nm in SCC and dysplastic lesions
(Fig. 2) is due to the accumulation of coproporphyrin III, a
constituent of the heme synthesis pathway in malignant
tissues [22].

Earlier studies have shown that measurement from
healthy tissues within a patient is not well defined, due to
‘‘field cancerization’’ through the influence of carcinogens
like tobacco, pan, and alcohol [16,22,25]. Therefore, the
present study relied on spectral measurements from
healthy population as control and attained improved
sensitivities and specificities for tissue discrimination
(Table 1). Nevertheless, sites such as vermilion border
(VB) of the lip, dorsal, and lateral sides of the tongue could
not be studied due to the presence of porphyrin/bacteria
emissions at 635, 685, and 705 nm [22,25].

While different methods were used for pre-processing of
spectral data, normalization with respect to the autofluor-
escence peak intensity was found to give better results in
classification. In comparison, mean-scaling of spectral
data and mean-scaling of normalized data did not improve
the classification efficiency.

First three PC loadings (Fig. 3) of the spectral data set
resembled the average autofluorescence spectrum (PC1),
oxygenated hemoglobin absorption dips and porphyrin like
peaks (PC2 and PC3) observed with excitation at 404 nm.
The three PCs together form 98.6% of the variance in the
spectra, which means that the complete spectral data set
could well be described by these three PCs. The significant
difference observed in the mean PC scores (P-value<0.005)
between different lesions, with minimum standard devia-
tion, shows that tissue classification is possible with the
information contained in these PCs. The shape of the
PC loading is responsible for the observed significant
differences.

In this clinical trial, we have obtained an overall
sensitivity of 92%, 78%, and 86% respectively for discrim-
inating normal from benign, benign from pre-malignant
and pre-malignant from malignant tissues with corre-
sponding specificities of 100%, 100%, and 90% (Table 1).
Since grade of malignancy could vary from one point in a
lesion to another and the biopsy samples were taken from a
smaller portion of the measured site, the sensitivities and
specificities reported are lower (Table 1).

In comparison, using PLS–ANN classification algo-
rithm, Wang et al. [16] obtained a sensitivity of 81% and a
specificity of 96% for discrimination of pre-malignant and

Fig. 4. Pair-wise scatter plot based on discriminant function

scores for 15 healthy volunteers and 34 patients with different

lesion types. (a) Normal–hyperplasia, (b) hyperplasia–

dysplasia, and (c) dysplasia–SCC. The solid symbols represent

the results of training data set and the open symbols relate to

the validation data set. The dotted line represents the cut-off

value for each lesion pair.
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malignant from benign tissues. Similarly, a sensitivity of
92% and a specificity of 95% was obtained for discriminat-
ing benign from dysplasia or SCC using PLSDA of
autofluorescence spectral data for in vivo diagnosis of
hamster buccal pouch pre-cancers and cancers [19]. In
comparison, De Veld et al. [26] reported a sensitivity of 94%
and a specificity of 94% for distinguishing cancerous lesions
from normal.

For group classification, LDA is a well-established
method, which unites input parameters into a discriminant
function to classify the available data into different groups
[20,21]. In this study PCA was performed only for the
reduction of spectral intensity data. Tissue classification
was made purely based on the discriminant function scores
obtained by LDA for each lesion. Cut-off values in the
scatter plot were used to calculate diagnostic accuracies.
The results obtained show the ability of this procedure to
act as an adjuvant to clinicians for in vivo tissue differ-
entiation in real-time without any tissue removal.

The discriminant function scatter plot is shown in
Figure 5 for all the four groups. In this figure the first two
functions in LDA classifies the lesions into four different
groups based on group centroids. Group means are
centroids and differences in location of centroids represent
dimensions along which the groups differ. It is possible to
visualize discrimination between groups by plotting the
individual scores for the two discriminant functions. This
classification based on the Mahalanobis distance is a
multivariate measure of the separation of a point from
the mean of a dataset in n-dimensional space. The sample is
classified to the group from which it has shorter Mahala-
nobis distance. All the normal and SCC lesions are
classified correctly in Figure 5 while there is an overlap in
the case of hyperplasia and dysplasia samples. One
dysplasia sample was misclassified as SCC, whereas one
hyperplasia was misclassified as normal and another one as
dysplasia. Rectangular boxes are drawn to demarcate each
group. The error bars of the mean discriminant function
scores at 95% confidence interval are plotted in Figure 6. It
can be seen that there is no overlap between different
groups and this shows the statistical significance between
different groups and also confirms the classification
potential of the mean discriminant function scores. The

results presented reveal the potential of this method
to accurately discriminate different lesion types using
discriminant function scores.

CONCLUSION

The present study using LDA on the autofluorescence
spectral data obtained in a clinical setting from oral mucosa
was able to classify dysplasia from SCC, dysplasia from

TABLE 1. Overall Diagnostic Accuracies Obtained for Different Lesion Pairs Consisting of 29 Samples in the

Training (Prediction) Set and 20 Samples in the Validation (Blind Test) Data Set

Lesion pairs

Normal vs. hyperplasia Hyperplasia vs. dysplasia Dysplasia vs. SCC

Se

(%)

Sp

(%)

Acc

(%)

PPV

(%)

NPV

(%)

Se

(%)

Sp

(%)

Acc

(%)

PPV

(%)

NPV

(%)

Se

(%)

Sp

(%)

Acc

(%)

PPV

(%)

NPV

(%)

Training set 83 100 93 100 90 80 100 91 100 86 89 80 86 89 80

Validation set 100 100 100 100 100 75 100 88 100 80 83 100 90 100 80

Overall 92 100 97 100 95 78 100 90 100 83 86 90 88 95 80

Sensitivity (Se)¼ true positive/(true positiveþ false negative), specificity (Sp)¼ true negative/(true negativeþ false positive),

accuracy (Acc)¼ (true positiveþ true negative)/(positiveþnegative), positive predictive value (PPV)¼ true positive/(true

positiveþ false positive), negative predictive value (NPV)¼ true negative/(true negativeþ false negative).

Fig. 5. Scatter plot of the first two discriminant functions by

LDA. The four categories of oral tissues are located in the four

distinct areas. The results are presented according to the

discriminant function scores determined based on LOO

method of cross validation.
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hyperplasia and hyperplasia from normal with sensitivities
of 92%, 78%, and 86%, respectively with corresponding
specificities of 100%, 100%, and 90%. The results obtained
show improved sensitivity and specificity as compared to
previous reports and confirm the advantages of using
multivariate statistical analysis on LIAF spectral data for
non-invasive diagnosis of oral pre-malignancies. Further
measurements are envisaged in a larger population to
explore the applicability of discriminant functions for
grading of oral mucosa in real-time and to improve the
diagnostic accuracies for discrimination of hyperplastic
and dysplastic lesions from normal and to distinguish oral
submucous fibrosis from other pre-malignant conditions.
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